Optimization of Non-Linear Multiple Traveling Salesman Problem Using K-Means Clustering, Shrink Wrap Algorithm and Meta-Heuristics
نویسنده
چکیده
This paper deals with generating of an optimized route for multiple Traveling Salesman Problems. We used a methodology of clustering the given cities depending upon the number of salesmen and each cluster is allotted to a salesman. “k-Means clustering” algorithm has been used for easy clustering of the cities. In this way the mTSP has been converted into TSP which is simple in computation compared to mTSP. After clustering, an optimized route is generated for each salesman in his allotted cluster. To achieve this, we first generated a parent route using “Shrink Wrap” algorithm and this parent string is further optimized by using two other optimizing algorithms. For this purpose, “Tabu Search” and “Simulated Annealing” were extensively used. From the results, we observed that Simulated Annealing generate optimized route covering less distance than Tabu search.
منابع مشابه
Evolutionary Computational Approaches to Solving the Multiple Traveling Salesman Problem Using a Neighborhood Attractor Schema
This paper presents a variation of the Euclidean Traveling Salesman Problem (TSP), the Multiple Traveling Salesman Problem (MTSP), and compares a variety of evolutionary computation algorithms and paradigms for solving it. Techniques implemented, analyzed, and discussed herein with regard to MTSP include use of a neighborhood attractor schema (a variation on k-means clustering), the "shrink-wra...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملA reactive bone route algorithm for solving the traveling salesman problem
The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...
متن کاملA New Hybrid Parallel Simulated Annealing Algorithm for Travelling Salesman Problem with Multiple Transporters
In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has diffe...
متن کامل